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A body immersed in an ocean of large depth is assumed to vibrate and to radiate a
time-harmonic acoustic field of small amplitude in the presence of gravity waves of
small amplitude. Assuming both waves to have lengths of the same order (which in
practice corresponds to very low acoustic frequencies) it is shown that the diffraction
of acoustic waves by the corrugated free surface generates a second-order acoustic
pressure field p2. The computation of p2 involves a difficulty: a non-homogeneous
Dirichlet condition to be satisfied on the mean free surface up to infinity which implies
the absence of any clear indication about the condition that should be imposed at
infinity to have a well-posed problem. In order to get an insight into this difficult
problem the simple case of a point source is studied. We first judiciously choose one
solution and then show it is the physical solution using a limiting-amplitude procedure.
Coming back to the general case of a vibrating body the calculation of p2 is split
into two successive steps: the first one consists in computing an explicit convolution
product via numerical methods of integration, the second one is a standard radiation
problem that is solved using a method coupling a Green integral representation and
finite elements. A peak of the second-order pressure appears just above the vibrating
body.

The same concepts also apply to other second-order scattering problems, such as
the sea-keeping of weakly immersed submarines.

1. Introduction
Let us first consider a body immersed in a quiet ocean of large depth, vibrating in

a known time-harmonic way and thus radiating an acoustic pressure field p1 of small
amplitude referred to as ‘the first-order’ acoustic pressure: this pressure field will
satisfy a Helmholtz equation in the liquid domain, together with given Neumann data
on the mean position Γ of the hull of the body, a homogeneous Dirichlet condition
on the free surface z = 0 and the standard radiation condition; good methods are
available to solve numerically such a problem.

Let us then suppose that there are gravity waves. The question is: how will
the acoustic propagation be perturbed by their presence (see figure 1)? In a first
approximation, the influence of gravity waves is taken into account only by the shape
of the free surface which can be considered as fixed at the acoustic time-scale. When

† Daniel Euvrard has laid with his legendary enthusiasm the foundations of the present work.
He started writing this article, but his passion for flying took him in an accident on July 10, 1994.
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Gravity waves

Figure 1. The problem.

this free surface is periodic (the case of a plane swell), the problem comes within the
theory of diffraction gratings. A possible direct approach could be to use classical
integral equation techniques involving the Green function of the grating. But such
a function is extremely difficult to compute. That is why we adopt an asymptotic
point of view by assuming that the amplitude A of the swell is small. In § 2 we
shall construct a physical pattern where the influence of gravity waves appears as a
‘second order’ acoustic pressure. The difficulty in the solution of this problem is the
absence of an explicit condition at infinity, which leads to an ill-posed problem. If we
substitute a point source for the body the new problem is still ill-posed but we can
calculate explicitly all its solutions (see § 3). Then we will judiciously choose one and
justify it by applying a limiting-amplitude process. In § 4, coming back to the problem
with the body, we will choose a solution, using the same argument as in the case of
a point source (exhibited in § 3). We will then propose a way to solve numerically
the problem and we will present some numerical results. Finally in § 5, the theoretical
justification of this method will be sketched.

This method is a continuation of the work initiated by Mechiche Alami (1992)
and Euvrard & Mechiche Alami (1992). It is not only useful in underwater acoustics
(its application in this context seems to be new), but also in the applications it may
have to ship naval hydrodynamics. Indeed the second-order sea-keeping of off-shore
structures and weakly immersed submarines is a problem of major importance. At
least for submarines it can be presented in a coherent asymptotic theory. For instance
if the submarine oscillates with a frequency ω/(2π) in calm water second-order terms
of frequencies 0 and ω/π appear. The velocity potential corresponding to the latter
must satisfy the Laplace equation, together with a Neumann condition on the hull and
the following non-homogeneous Robin–Fourier condition on the mean free surface:

∂ϕ2

∂z
+

4ω2

g
ϕ2 = q for z = 0,

where q is a known function which depends on the first-order potential ϕ1. The
difficulty concerning this non-homogeneous boundary condition up to infinity, and
consequently the absence of a clear condition at infinity, is the same as in our
problem of acoustics. So the same concepts can be applied: our approach follows the
same ideas as in the paper by Sclavounos (1988) who deals with three-dimensional
sea-keeping problem. His method consists in introducing some ‘second-order Green
functions’ which are derived (by means of a horizontal Fourier transform) using the
same limiting-amplitude technique as in § 3. For a floating or immersed body, these
functions allow the second-order velocity potential to be expressed as a boundary
integral. As regards the numerical implementation, this approach has been developed
in a slightly different form (which avoids introducing these functions) by Papin (1990)
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and Friis, Grue & Palm (1991) in the two-dimensional situation, and more recently by
Bellier (1997) for the three-dimensional sea-keeping of submarines. The leading idea
is to search for a particular solution of the second-order problem by splitting it into
a ‘free’ velocity potential which ignores the body but satisfies the proper free-surface
condition, and a ‘correction’ term satisfying a homogeneous free-surface condition
(like the first-order potential): the former is obtained by Fourier transform whereas
the latter can be computed by classical integral techniques. Unfortunately, usual fast
Fourier transform algorithms are not adapted for the numerical approximation of the
‘free’ potential. The precise numerical procedures described in the present paper are
partly based on Fourier series and Hankel transforms. They were applied by Bellier
(1997) in hydrodynamics.

2. Problem formulation
In this section, we are interested in constructing a system of equations which models

the influence of gravity waves on the acoustic waves radiated from an immersed body.
We study the case where wavelengths of both gravity and acoustic waves are of the

same order. For usual swells, this implies on one hand that low-frequency acoustics
is considered, and on the other hand that the acoustic period Ta is much smaller
than the gravity wave period Tg . Indeed, suppose for example that the acoustic and
gravity wavelengths are equal, and denoted by Λ. Then Λ = caTa = cgTg , where ca
is the sound speed in water and cg = gTg/2π the celerity of gravity waves (g is the
gravitational acceleration). As ca = 1500 m s−1, we infer that T 2

g ≈ 103 × Ta (where
both periods are expressed in s): for instance, if Ta = 0.1 s (which corresponds to
Λ = 150 m), we have Tg ≈ 10 s. Hence, in a first approximation, we can consider that
gravity waves are fixed as far as the acoustic time-scale is considered. Thus we study
an acoustic problem in a domain bounded by a corrugated free surface.

This way of presenting the problem may be seen as a simplification of a more
general approach which consists in expanding the physical variables according to
two parameters representing the amplitudes of the perturbations of acoustic and
hydrodynamic phenomena in the conservation equations (see Champy-Doutreleau
1998).

We suppose the ocean to be an homogeneous ideal fluid. Let Ω be a three-
dimensional fluid domain, infinitely deep and delimited by the hull Γ of the body
and the corrugated free surface FS . We assume that the equation of this free surface
is known:

z =A η(x, y)

where A denotes the amplitude of gravity waves and the system of coordinates
(O, x, y, z) is chosen such that the z-axis points vertically upwards. Up to the numerical
examples of § 4, we shall consider general shapes of the free surface: η is only assumed
to be a bounded regular function. The acoustic pressure field P (M, t) defined at every
point M = (x, y, z) in Ω and every time t, must satisfy

∇2P − ∂2P

∂t2
= 0 in Ω, (2.1a)

P = 0 on FS, (2.1b)

∂P

∂n
= F on Γ . (2.1c)
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Figure 2. A body immersed in calm water.

Equation (2.1a) is the wave equation written here in a non-dimensioned form, (2.1b)
expresses that pressure is constant above the free surface, and (2.1c) ensures the
continuity of the normal velocity on the hull: F is a datum which is related to the
normal velocity Vn of Γ by ∂P/∂n = −ρ ∂Vn/∂t, where ρ is the fluid density.

The direct solution of this problem seems to be very difficult, because of the
corrugated free surface. However if we suppose that the amplitude A of the swell is
small, we can use a perturbation method which consists in expanding the acoustic
field according to ascending powers of this small parameter:

P = P1 +AP2 + O(A2).

Substituting this expansion in the above equations leads us to write a sequence of
problems set in the ‘mean fluid domain’ Ω0 bounded by ‘the mean free surface’ FS0,
namely the plane z = 0 (see figure 2). The first- and second-order acoustic pressures
P1(M, t) and P2(M, t) are respectively solutions to

∇2P1 − ∂2P1

∂t2
= 0 in Ω0, (2.2a)

P1 = 0 on FS0, (2.2b)

∂P1

∂n
= F on Γ , (2.2c)

and

∇2P2 − ∂2P2

∂t2
= 0 in Ω0, (2.3a)

P2 = Q on FS0, (2.3b)

∂P2

∂n
= 0 on Γ , (2.3c)

where

Q (M0, t) = −η (M0)
∂P1

∂z
(M0, t) for every M0 ∈ FS0. (2.4)

Equations (2.2b) and (2.3b) follow from (2.1b) using a Taylor expansion of the acoustic
pressure P (x, y,A η(x, y), t) about z = 0.

Suppose now that the body vibrates in a periodic and established way, which may
be expressed by

F(M, t) = Im
{

e−iωtf(M)
}
, M ∈ Γ ,

where ω is the acoustic wave pulsation. This suggests seeking the first-order acoustic
pressure in the form

P1(M, t) = Im
{

e−iωtp1(M)
}
.
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Substituting this expression into (2.4), we deduce the same time-dependence for Q
and thus also for P2:

P2(M, t) = Im
{

e−iωtp2(M)
}
.

The fields p1 and p2 are thus solutions to the following first- and second-order
time-harmonic problems:

∇2p1 + ω2p1 = 0 in Ω0, (2.5a)

p1 = 0 on FS0, (2.5b)

∂p1

∂n
= f on Γ , (2.5c)

and

∇2p2 + ω2p2 = 0 in Ω0, (2.6a)

p2 = q on FS0, (2.6b)

∂p2

∂n
= 0 on Γ , (2.6c)

where

q = −η ∂p1

∂z

∣∣∣∣
FS0

. (2.7)

These systems of equations are incomplete for determining p1 and p2. Indeed there
is no condition for their asymptotic behaviour at infinity; more precisely we cannot
distinguish the outgoing waves from the incoming waves. And of course only the
outgoing waves (i.e. which radiate towards infinity) are physically acceptable.

Concerning the first-order problem, we know how to write a condition which selects
outgoing waves. For this kind of problem, where the condition on the free surface is
homogeneous, this radiation condition is written in the Rellich form:

∂p1

∂R
− iωp1 = O

(
1

R2

)
when R =

(
x2 + y2 + z2

)1/2 →∞. (2.8)

On the other hand concerning the second-order problem, where the condition on
the free surface extends up to infinity, we do not know how to write a condition at
infinity to choose outgoing waves. It means that this problem is ill-posed: it has an
infinity of solutions but it is likely that only one is physically acceptable.

In the rest of this article, we shall see how to get round this difficulty to find the
physical solution of the second-order problem. In a first step, we shall consider the
case where the body is substituted by a point source: it contains the difficulty but the
calculations are explicit. We will judiciously select one solution and show why it is
actually the physical solution.

3. Analytic solution for a time-harmonic point source
Let us consider a Helmholtz source located at point A with coordinates (0, 0,−a)

for positive a (see figure 3). In § 3.1, we shall assume the acoustic field generated by
this source to be time-harmonic and formulate both first- and second-order problems.
For the first-order problem, which is well-posed, we shall exhibit its unique solution.
On the other hand, for the second-order problem we have no idea of what to impose
at infinity to get a well-posed problem; we shall choose one solution via a Fourier
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Figure 3. Acoustic point source.

transform. Then in § 3.2 we shall consider a time-harmonic source starting at t = 0
(generating a non-harmonic acoustic field) in the presence of gravity waves and solve
the corresponding transient problem up to the second order. It will be shown that
this solution tends for t→ +∞ towards the previous time-harmonic solution of § 3.1,
so establishing that it was in fact the right solution. This result is referred to as the
limiting amplitude principle.

3.1. An explicit solution of the time-harmonic problem

3.1.1. First-order time-harmonic problem

According to § 2, the first-order pressure generated by a time-harmonic point source
is Im

{
e−iωt p1(M)

}
where p1 must satisfy

(∇2 + ω2)p1 = δA for z < 0, (3.1a)

p1 = 0 on FS0, (3.1b)

RC. (3.1c)

Here δA is the Dirac distribution at point A, and RC stands for radiation condition
(2.8).

Such a problem is known to be well-posed. And its solution can be trivially
constructed by the so-called image procedure, i.e. by superposing a Helmholtz source
at point A and a Helmholtz sink at point B, where B is symmetrical to A with respect
to the mean free surface FS0 (its coordinates are (0, 0, a), see figure 3). Let g denote
the ‘outgoing’ Green function of the Helmholtz equation, i.e.

g(R) =
eiωR

−4πR
with R =

(
x2 + y2 + z2

)1/2
, (3.2)

which represents the field generated by a time-harmonic source in the free space
(located at the origin). It may be readily seen that the solution to the above equations
is

p1(M) = g(‖AM‖)− g(‖BM‖), (3.3)

where ‖AM‖ =
(
x2 + y2 + (z + a)2

)1/2
and ‖BM‖ =

(
x2 + y2 + (z − a)2

)1/2
.

3.1.2. Second-order time-harmonic problem

The second-order time-harmonic pressure field associated with the point source is
Im
{

e−iωtp2(M)
}

where p2 must satisfy

(∇2 + ω2)p2 = 0 for z < 0, (3.4a)

p2 = q on FS0, (3.4b)



Underwater acoustics and gravity waves 311

and the right-hand side of (3.4b) can be derived from p1 (see (2.7)):

q (M0) = −η (M0)
∂p1

∂z
(M0) for every M0 ∈ FS0. (3.5)

As p2 is clearly a smooth function and as the calculation domain is geometrically
simple we shall try to solve (3.4a, b) by using a horizontal Fourier transform. Namely
let us denote u and v the transformed variables corresponding to x and y, and

p̂2(u, v, z) =Fx, y p2(x, y, z) =

∫∫
R2

p2(x, y, z) e−2iπ(ux+vy) dx dy .

Assuming that the partial z-derivative commutes with F, we see that p̂2 must satisfy

∂2p̂2

∂z2
+
(−4π2%2 + ω2

)
p̂2 = 0 for z < 0, (3.6a)

p̂2 = q̂ for z = 0, (3.6b)

where % =
√
u2 + v2. The general solution of (3.6a) can be written

A(u, v) e−iz(ω2−4π2%2)1/2

+ B(u, v) e+iz(ω2−4π2%2)1/2

for 0 < % <
ω

2π
,

C(u, v) ez(4π
2%2−ω2)1/2

+ D(u, v) e−z(4π
2%2−ω2)1/2

for % >
ω

2π
.

That p̂2 should be bounded for z 6 0 implies D = 0.
This expression can be written in a more convenient form using the ‘outgoing’ Green

function g(R) given in (3.2) as well as the ‘incoming’ Green function g∗(R) = g(R).
More precisely, consider the associated doublets ∂g/∂z and ∂g∗/∂z in the z-direction.
Using polar coordinates and introducing J0, taking into account J′0 = −J1 and
integrating by parts, and finally using Erdélyi et al. (1954, p. 20, formulae 18 and 21)
it is easy to find their Fourier transforms, namely

∂̂g

∂z
(%, z) =

 −
1
2

e−iz(ω2−4π2%2)1/2

for 0 < % <
ω

2π
,

− 1
2

ez(ω
2−4 π2%2)1/2

for % >
ω

2π
,

(3.7a)

∂̂g∗

∂z
(%, z) =

 −
1
2

e+iz(ω2−4 π2%2)1/2

for 0 6 % <
ω

2π
,

− 1
2

ez(4 π
2%2−ω2)1/2

for % >
ω

2π
.

(3.7b)

Let us arbitrarily split C into two parts: C(u, v) = E(u, v) +F(u, v). And let µ(x, y) and
µ∗(x, y) be the respective inverse Fourier transforms of

µ̂(u, v) =

 A for 0 6 % 6
ω

2π
,

E for % >
ω

2π
,

and µ̂∗(u, v) =

 B for 0 6 % 6
ω

2π
,

F for % >
ω

2π
.

Then we have

p̂2(u, v, z) = −2 µ̂(u, v)
∂̂g

∂z
(%, z)− 2 µ̂∗(u, v)

∂̂g∗

∂z
(%, z) (3.8)

for z 6 0. Equation (3.6b) together with (3.7a) implies µ̂+ µ̂∗ = q̂ , i.e.

µ(x, y) + µ∗(x, y) = q(x, y) . (3.9)
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Via F−1, (3.8) becomes in a quite formal way

p2(x, y, z) = −2 µ(x, y)
x,y∗ ∂g
∂z

(x, y, z)− 2 µ∗(x, y)
x,y∗ ∂g

∗

∂z
(x, y, z), (3.10)

µ and µ∗ being compelled to satisfy (3.9) and
x,y∗ meaning the convolution with respect

to x and y.
Here we decide to make a fundamental choice. The Rellich Condition in the first-

order problem allows us to select outgoing waves (see § 2); therefore, we also select
the outgoing waves in the second-order problem assuming µ∗ = 0, whence µ = q and

p2(M) =

(
−2 q

x,y∗ ∂g
∂z

)
(M) = −2

∫∫
FS0

q(M0)
∂

∂z
g(‖M0M‖) dM0. (3.11)

¿From (3.3) and (3.5) we see that for every M0 ∈ FS0,

q (M0) =
a

2π
η(M0)

(
iω

‖AM0‖2
− 1

‖AM0‖3

)
eiω‖AM0‖ (3.12)

(with ‖AM0‖ =
(
x2 + y2 + a2

)1/2
), while

∂

∂z
g(‖M0M‖) = − z

4π

(
iω

‖M0M‖2
− 1

‖M0M‖3

)
eiω‖M0M‖. (3.13)

Hence, for any given negative z, the convolution integral (3.11) is absolutely con-
vergent. It defines a C∞ function which is actually a solution of (3.4a). Moreover it
satisfies the Dirichlet condition (3.4b) since it is well-known that a smooth double-layer
potential

D(M) =

∫
Σ

µ(N)
∂

∂nN
g(‖NM‖) dΣN

on a surface Σ exhibits the limits

∓µ(M0)

2
+

∫
Σ

µ(N)
∂

∂nN
g(‖NM0‖) dΣN (3.14)

when M tends towards M0 ∈ Σ, with the + sign if the limit is obtained on the side
of Σ containing the normal vector n, and the − sign on the opposite side. If Σ is
a plane, the integral in (3.14) vanishes and the Dirichlet condition (3.4b) is trivially
satisfied (note that ∂/∂nN = −∂/∂z).

But if we replace g by g∗ in (3.11) the same conclusions are valid. Still better: if
we split q, according to (3.9), into two continuous functions decreasing at infinity the
same conclusions hold. So it must be pointed out that we have chosen one solution
among an infinity. Now by using a limiting amplitude procedure we shall prove that
we have chosen the right solution − we mean the physical one.

There remains an open question as regards this choice: can we formulate a condition
at infinity which allows us to select this physical solution. An attempt was made by
Euvrard (1994b) to decide whether the standard radiation condition (2.8) fulfils
the purpose or not. This requires us to exhibit the asymptotic behaviour of p2 at
infinity. Unfortunately, a mistake in the calculations does not allow us to validate the
conclusions of this paper.
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3.2. Justification of the solution

3.2.1. First-order time-dependent problem

Consider now a time-harmonic source starting at t = 0. Without gravity waves, the
pressure field generated by this source is solution to the time-dependent first-order
problem (

− ∂
2

∂t2
+ ∇2

)
P1 = δA ⊗ Im

{
e−iωt

}
for z < 0 and t > 0, (3.15a)

P1 = 0 for z = 0 and t > 0, (3.15b)

P1 = 0 and
∂P1

∂t
= 0 for z < 0 and t = 0. (3.15c)

The solution to these equations can be expressed by means of the Green function G
of the wave equation in the free space: G is a distribution whose support is exactly
the boundary of the forward light cone (i.e. the set {(M, t); t > 0 and ‖OM‖ = t}, see
Treves 1975); it is defined by:

G(M, t) = − 1

4πt
δ(‖OM‖ − t), (3.16)

which satisfies (
− ∂

2

∂t2
+ ∇2

)
G = δM=O ⊗ δt=0.

The latter allows us to express the solution to the wave equation(
− ∂

2

∂t2
+ ∇2

)
P = T , (3.17)

written in the sense of distributions in R4: here P and T are distributions defined in
the whole space R3 and for all t ∈ R; they are both assumed to be causal, i.e. P = 0
and T = 0 if t < 0. In this situation, the convolution product

T
x,y,z,t∗ G

is actually the only causal solution to (3.17). Indeed{(
− ∂

2

∂t2
+ ∇2

)
P

}
x,y,z,t∗ G = P

x,y,z,t∗
{(
− ∂

2

∂t2
+ ∇2

)
G

}
= P

x,y,z,t∗ {δM=O ⊗ δt=0}
= P .

To find P1, we have to rewrite (3.15a–c) in the form (3.17). We again use the image
procedure which amounts to superimposing a source at point A and a sink at point
B (see figure 3) in order to ‘eliminate’ the condition on z = 0. Consider the field
(again denoted by P1) defined in the whole space R3 by an antisymmetrical extension
across the plane z = 0 (i.e. P1(x, y, z, t) = −P1(x, y,−z, t) if z > 0), and also defined
for negative t by assuming that P1 = 0 if t < 0. Using (3.15a–c), it is easily seen (see
e.g. Schwartz 1965) that(

− ∂
2

∂t2
+ ∇2

)
P1 = (δA − δB)⊗ Im

{
H(t) e−iωt

}
,

in the sense of distributions (in R4). Here, H(t) stands for the Heaviside step function.
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We deduce that

P1 =
(
(δA − δB)⊗ Im

{
H(t) e−iωt

}) x,y,z,t∗ G,

which yields

P1(M, t) = Im

{
H(t− ‖AM‖) e−iω(t−‖AM‖)

−4π‖AM‖ −H(t− ‖BM‖) e−iω(t−‖BM‖)

−4π‖BM‖
}
, (3.18)

by virtue of the expression (3.16) for G.
The latter expression can be compared with the time-harmonic solution p1 given

in (3.3): we clearly see that

P1(M, t) = Im
{

e−iωt p1(M)
}

if t > max {‖AM‖, ‖BM‖}. (3.19)

In other words, at every given point M, the time-dependent solution coincides for
large enough t with the time-harmonic solution: this may be seen as a simplified form
of the limiting amplitude principle for the first-order pressure field.

Our aim is now to prove a similar result for the second-order problem. We
will see that the second-order pressure field is no longer time-harmonic but tends
asymptotically to the time-harmonic field exhibited in § 3.1.2.

3.2.2. Second-order time-dependent problem

The time-dependent second-order problem for the source starting at t = 0 is(
− ∂

2

∂t2
+ ∇2

)
P2 = 0 for z < 0 and t > 0, (3.20a)

P2 = Q for z = 0 and t > 0, (3.20b)

P2 = 0 and
∂P2

∂t
= 0 for z < 0 and t = 0, (3.20c)

where the transient Dirichlet datum is Q = −η ∂P1/∂z|z=0 (see (2.4)). From (3.18), we
deduce that for every M0 ∈ FS0,

Q (M0, t) = H
(
t− ‖AM0‖) K (M0, t) , (3.21)

where

K (M0, t) =
a

2π
η (M0) Im

{(
iω

‖AM0‖2
− 1

‖AM0‖3

)
eiω(‖AM0‖−t)

}
·

Note that by virtue of (3.12), we have

Q (M0, t) = H
(
t− ‖AM0‖) Im

{
e−iωt q(M0)

}
. (3.22)

In order to find P2, we apply the image procedure again. The difference with the
first-order problem is that the antisymmetrical extension of P2 is no longer continuous
across the plane z = 0. Using the standard distribution theory (see Schwartz 1965),
we deduce in this case that (3.20a–c) is equivalent to(

− ∂
2

∂t2
+ ∇2

)
P2 = −2

∂

∂z

(
Q δFS0

)
, (3.23)

in the sense of distributions (in R4). Here δFS0
denotes the surface Dirac measure on

the plane z = 0. Hence, as for the first-order problem, we infer that

P2 =

{
−2

∂

∂z

(
Q δFS0

)} x,y,z,t∗ G,
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which yields

P2 = −2
∂

∂z
(Q

x,y,t∗ G) = −2Q
x,y,t∗ ∂G

∂z
. (3.24)

3.2.3. The limiting-amplitude procedure

To justify our choice of a solution of the second-order time-harmonic problem
(see (3.11)), we prove here that it actually is the asymptotic behaviour of the time-
dependent pressure field P2 as t→ +∞. More precisely we shall see that

P2(M, t) = Im
{

e−iωt p2(M)
}

+ O(t−2) as t→ +∞, (3.25)

for every fixed M: this result is referred to as the limiting-amplitude principle.
First we need a more explicit expression for P2 given in (3.24). ¿From the definition

(3.16) of G, we infer

(Q
x,y,t∗ G)(M, t) =

∫∫
FS0

Q
(
M0, t− ‖M0M‖)
−4π ‖M0M‖ dM0.

Notice that for fixed M and t, the domain of integration is bounded. Indeed, we
deduce from the expression (3.22) for Q that

(Q
x,y,t∗ G)(M, t) = Im

∫∫
FS0

H
(
t− ‖M0M‖ − ‖AM0‖) q(M0) e−iω(t−‖M0M‖)

−4π ‖M0M‖ dM0,

which can be written as

(Q
x,y,t∗ G)(M, t) = Im

∫∫
D(M,t)

q(M0) e−iω(t−‖M0M‖)

−4π ‖M0M‖ dM0,

where D(M, t) denotes the bounded subdomain of the mean free surface FS0 defined
by

D(M, t) = {M0 ∈ FS0; ‖M0M‖+ ‖AM0‖ < t} .
Finally, using the expression for the Helmholtz Green function g (see (3.2)), we have

P2(M, t) = Im

{
−2 e−iωt ∂

∂z

∫∫
D(M,t)

q(M0) g(‖M0M‖) dM0

}
. (3.26)

In order to apply the operator ∂/∂z to the double integral, we have to take into
account the z-dependence of D(M, t) and its boundary ∂D(M, t). We shall actually
consider z as a ‘time-like coordinate’ and the integration domain D(M, t) as a ‘material
domain’ to be followed in its movement, namely

∂

∂z

∫∫
D(M,t)

I(M,M0) dM0

=

∫∫
D(M,t)

∂I
∂z

(M,M0) dM0 +

∫
∂D(M,t)

I(M,M0)Vn ds(M0), (3.27)

where I(M,M0) = q(M0) g
(‖M0M‖) and Vn is the ‘normal velocity’ of ∂D(M, t), i.e.

Vn =
−∂F/∂z(M,M0)

‖∇M0
F(M,M0)‖ with F(M,M0) = ‖M0M‖+ ‖AM0‖ = t.

It remains to evaluate the asymptotic behaviour when t→ +∞ of both integrals on
the right-hand side of (3.27). Let us give a geometrical interpretation of the domains
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of integration. For fixed M and t, the equation F(M,M0) = t defines an ellipsoid of
revolution with major axis t and foci A and M: for large t, it tends to a sphere of
diameter t. Hence, ∂D(M, t) is the intersection of this ellipsoid with the free surface
FS0: it behaves like a circle of diameter t when t→ +∞. As a consequence∫

∂D(M,t)

I(M,M0)Vnds = O(t−3),

since I(M,M0) = O(t−3) and Vn = O(t−1) if M0 ∈ ∂D(M, t). On the other hand, the
surface integral on D(M, t) tends to the corresponding integral on the whole plane
FS0. More precisely,

P2(M, t) = Im

{
−2 e−iωt

∫∫
FS0

q(M0)
∂

∂z
g
(‖M0M‖) dM0

}
+ O(t−2), (3.28)

since ∂I/∂z(M,M0) is of order ‖OM0‖−4
when ‖OM0‖ → ∞. By virtue of (3.11), this

completes the proof of the form (3.25) of the limiting-amplitude principle.

4. Numerical solution for an immersed vibrating body
Let us come back to the general problem of an immersed body S vibrating in a

given time-harmonic way in the presence of gravity waves, as presented in § 2. The
first-order complex pressure p1 must satisfy

∇2p1 + ω2p1 = 0 in Ω0, (4.1a)

p1 = 0 on FS0, (4.1b)

∂p1

∂n
= f on Γ , (4.1c)

RC, (4.1d)

where RC stands for the standard radiation condition (2.8). This problem is well-
posed: we show below how to obtain a numerical approximation of p1.

The second-order complex pressure p2 must satisfy

∇2p2 + ω2p2 = 0 in Ω0, (4.2a)

p2 = q on FS0, (4.2b)

∂p2

∂n
= 0 on Γ , (4.2c)

where q = −η ∂p1/∂z|FS0
(see (2.7)). For our numerical simulation, we shall assume

that the shape of the corrugated free surface η corresponds to a monochromatic plane
swell, for instance

η(x, y) = cos (νy). (4.3)

This assumption is valid if the body is deeply immersed since we can neglect the effect
of the body on the propagation of the swell near the free surface.

We mentioned in § 2 our lack of knowledge about what to impose at infinity so
that the above second-order problem should be well-posed because of the presence
of the non-homogeneous boundary condition p2 = q on the unbounded surface FS0.
The aim of this section is to show how to overcome this difficulty: we propose to split
problem (4.2a–c) into two successive problems via the linearity of the equations.
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4.1. A two-step procedure for the second-order problem

Let us first ignore the presence of the body S and consider the following problem for
the ‘free’ second-order pressure field pf2:

∇2p
f
2 + ω2p

f
2 = 0 in the whole half-space z < 0, (4.4a)

p
f
2 = q on FS0. (4.4b)

Of course condition (4.2c) is not satisfied by pf2. So p
f
2 will be corrected by a second

pressure field pc2 satisfying

∇2pc2 + ω2pc2 = 0 in Ω0, (4.5a)

pc2 = 0 on FS0, (4.5b)

∂pc2
∂n

= −∂p
f
2

∂n
on Γ , (4.5c)

RC. (4.5d)

The sum p2 = p
f
2 +pc2 obviously satisfies (4.2a–c). As previously explained the radiation

condition is associated here with the homogeneous Dirichlet condition on FS0.
The general concept of spliting p2 into pf2 defined in the half-space z < 0 and pc2 in

Ω0 (pc2 satisfing RC but not pf2), is not new since it has been used for a long time in all
diffraction problems: the incident potential ignores the body and does not satisfy RC,
while the diffracted potential is defined outside the body and satisfies a Neumann
condition such as (4.5c), together with RC.

But the question is: how to solve (4.4a, b)? Due to the very special geometry of
the domain where this problem is posed, it is possible to apply a horizontal Fourier
transform exactly like in § 3.1: it actually is the same problem as (3.4a, b), the only
difference being that now q is no longer explicit but is derived from the numerical
approximation of p1. The method presented in § 3.1 remains valid; we shall make the
same choice µ∗ = 0, and pf2 will be the convolution product

p
f
2(M) = −2

∫∫
FS0

q(M0)
∂

∂z
g(‖M0M‖) dM0, (4.6)

where the vertical Helmholtz doublet ∂g/∂z is given in (3.13).
Is our choice of a condition at infinity, which is implicit in (4.6), the right one?

There is no simple proof for that, but good presumptive evidence. The only way to
justify this choice would be to use a limiting amplitude process as we did for a point
source. But the fact that the solution can no longer be expressed explicitly makes the
justification far more difficult: a sketch of the proof will be mentioned in § 5.

4.2. A FEM/BEM coupling

To solve problems (4.1a–d) and (4.5a–d) we used an efficient method which was
designed by Jami & Lenoir (1978) and seems to be well adapted here. It couples the
boundary element method (BEM) and the finite element method (FEM): it will be
briefly reported hereafter for the example of the first-order problem.

The starting point of this method is the well-known Green representation formula

p1(M) =

∫
Γ

[
−p1(N)

∂G
∂nN

(M,N) + f(N) G(M,N)

]
dΓN for M ∈ Ω0, (4.7)

where G denotes the Green function of the first-order problem, i.e. the time-harmonic
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S n
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X0

X̂

C

Figure 4. A BEM/FEM coupling.

field generated by a source located at point N (up to a suitable translation, it is
simply the field calculated in § 3.1):

G(M,N) = g(‖MN‖)− g(‖MN ′‖) where g(R) =
eiωR

−4πR
,

N ′ being symmetrical with N with respect to the plane z = 0.
The coupling method consists in considering instead of the unbounded domain Ω0,

a bounded domain Ω̂ limited by the surfaces Σ and Γ (see figure 4), where Σ is any
smooth surface surrounding Γ ; it may be located close to Γ but is compelled to be
at a strictly positive distance from Γ . In Ω̂ and on Γ the Helmholtz equation (4.1a)
and the Neumann condition (4.1c) are imposed. On Σ the following condition, called
coupling condition is imposed:

Dp1(M) = D

{∫
Γ

[
−p1(N)

∂G
∂nN

(M,N) + f(N) G(M,N)

]
dΓN

}
∀M ∈ Σ, (4.8)

which simply derives from (4.7) by applying the boundary operator

D =
∂

∂nM
+ λ for some complex constant λ such that Im λ 6= 0.

This condition actually ‘couples’ the unknown p1 on Σ and the unknown p1 on Γ .
The problem to be solved in Ω̂ can be written as

∇2p1 + ω2p1 = 0 in Ω̂, (4.9a)

∂p1

∂n
= f on Γ , (4.9b)

coupling condition on Σ. (4.9c)

The reason for introducing the operator D is the elimination of the so-called
irregular frequencies. Indeed, it can be proved (see Euvrard 1994a) that (4.9a–c) is
equivalent (before discretization) to (4.1a–d) provided the ‘auxiliary problem’

∇2p+ ω2p = 0 in S ∪ Ω̂,
D p = 0 on Σ,

only has the trivial solution p = 0: and this property clearly holds if Im λ 6= 0. In this
case, this means that the solution to (4.9a–c) is the restriction to Ω̂ of the solution
to (4.1a–d), and conversely that the solution to (4.9a–c) can be analytically extended
to Ω0 into the solution to (4.1a–d). Such an extension is quite easy: it is simply the
representation formula (4.7).



Underwater acoustics and gravity waves 319

Then problem (4.9a–c) is written in a variational form and discretized using finite
elements. After resolution of the subsequent linear algebraic system, the solution is
given in Ω̂ and on Γ via the finite element interpolation; but it is also given everywhere
in Ω0 via the integral representation (4.7), involving a numerical quadrature of the
integral on Γ . Unlike conventional BEM, no singular function appears in this method
since G(M,N) is computed for M ∈ Σ and N ∈ Γ , the distance ‖MN‖ being strictly
positive; this allows the introduction of finite elements of high order and of numerical
quadrature in (4.7). A code devoted to this method has been developed by our team
in the last years: it is called melina and has been used to obtain the numerical results
given hereafter in § 4.4.

4.3. Numerical computation of the convolution product

The aim of this subsection is to show a way to compute the convolution product (4.6)
which defines the ‘free’ second-order pressure field p

f
2. As p1 is only known by the

numerical process described above, the same holds for the datum q = −η ∂p1/∂z|FS0

(see (2.7)). The method proposed here consists in a numerical integration of (4.6)
based on Fourier transform. Compared with a direct computation of (4.6), this
method becomes less time consuming if pf2 is determined at a large number of points,
by using efficient discrete Fourier algorithms.

The convolution product (4.6) can be expressed by means of the horizontal Fourier
transform (with respect to x and y):

p
f
2 = −2 F−1

(
F(q) ·F

(
∂g

∂z

))
, (4.10)

where F(∂g/∂z) is explicit (see (3.7a)). The main difficulty lies in the calculation of
F(q): indeed q behaves like O((x2+y2)−1) at infinity, which is not absolutely integrable
(q 6∈ L1(FS0)). This prevents us from using a standard fast fourier transform process.
Our idea consists in exhibiting the asymptotic expansion qas of q at infinity, in order
to split F(q) in two parts:

F(q) =F (q − qas) +F (qas) , (4.11)

where q − qas ∈ L1(FS0), which allows us to calculate F(q − qas) thanks to a fast
Fourier transform algorithm, and F(qas) involves explicit calculations.

The asymptotic behaviour of q is easily derived from the integral representation
formula (4.7) (using the asymptotic expansion of G and its derivatives). In polar
coordinates, we obtain

qas(r, θ) = η(r sin θ) q̃as(r, θ) where q̃as(r, θ) = χ(r)
eiωr

r2
h(θ), (4.12)

and h(θ) is defined by the following integral on the hull Γ of the body:

h(θ) = − ω
2π

∫
Γ

(p1(N) αθ(N) · n− izN f(N)) e−iω(xN cos θ+yN sin θ) dΓN, (4.13)

with αθ(N) = (ω zN cos θ, ω zN sin θ, i); the radial function χ(r) is a given regular
truncation function which avoids the singularity of r−2 at r = 0: for some fixed a and
b such that 0 < a < b,

χ(r) = 0 if r < a and χ(r) = 1 if r > b.

It is readily seen that the Fourier transform of qas must be taken in an L2 sense.
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To calculate this Fourier transform, we first rewrite η (given in (4.3)) in complex
exponential form, which yields

F qas(u, v) =
1

2

{
F q̃as

(
u, v − ν

2π

)
+F q̃as

(
u, v +

ν

2π

)}
.

We thus have to compute F q̃as. Noticing that q̃as is the product of a function of r
by h(θ), we can express its Fourier transform by converting h(θ) in Fourier series:

h(θ) =

+∞∑
n=−∞

ĥn einθ where ĥn =
1

2π

∫ 2π

0

h(θ) e−inθ dθ.

If we denote (ρ, α) the polar coordinates in the Fourier plane, we have

F q̃as(ρ, α) =

+∞∑
n=−∞

(−i)n einα ĥnLn(ρ)

where

Ln(ρ) = 2π

∫ +∞

0

χ(r)
eiωr

r
Jn(2πρr) dr.

For the computation of Ln(ρ), we have to distinguish the two cases n 6= 0 and n = 0.
If n 6= 0, by virtue of the choice of the truncation function χ(r), we can rewrite
Ln(ρ) in the form Ln(ρ) = Jn(ρ) +Kn(ρ) where

Jn(ρ) = 2π

∫ b

0

(1− χ(r)) eiωr

r
Jn(2πρr) dr and Kn(ρ) = 2π

∫ +∞

0

eiωr

r
Jn(2πρr) dr.

The expression for Kn(ρ) is explicit (see Gradshteyn & Ryzhik 1980). If n > 0, we
have

Kn(ρ) =


2π

einπ/2

n

(
2πρ/ω

1 +
(
1− (2πρ/ω)2

)1/2

)n

if ρ < ω/2π,

2π
ein arcsin(ω/(2πρ))

n
if ρ > ω/2π,

and K−n(ρ) = (−1)nKn(ρ). On the other hand, Jn(ρ) is computed by a numerical
integration. In order to take into account the oscillations due to the complex expo-
nential and the Bessel function of first kind, we decompose the integration domain
[0, b] into subdomains [ai, ai+1] where the ai are the zeros of the integrand except
perhaps at 0 and b. In each range of integration, we substitute a series of Chebyshev
polynomials for the integrand: the integration on each subdomain is explicit (see
Clenshaw & Curtis 1960).

The computation of L0(ρ) is somewhat different since the above decomposition is
no longer valid (K0(ρ) is not a convergent integral). The difficulty in its numerical
calculation lies not only in the oscillations of both exponential and Bessel functions,
but also in the fact that the integration domain extends up to infinity. The method we
have used combines the Clenshaw & Curtis integration method and an acceleration
of convergence (see Evans 1993).

Once F(q) has been computed, the determination of pf2 simply consists in a
numerical inverse Fourier transform (see (4.10)). Note that both functions F(q) and
F(∂g/∂z) have a circle of singular points with infinite derivatives (due to the slow
decay of q and ∂g/∂z at infinity). We have chosen a numerical integration method
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Figure 5. (a) Real part and (b) imaginary part of p1.
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Figure 6. (a) Real part and (b) imaginary part of p2.

containing an adaptative scheme. A more efficient method would be to extract these
singularities in order to use a fast Fourier transform algorithm for the computation
of the regular part.

4.4. Numerical results

We suppose that both acoustic and hydrodynamic wavelengths are equal, denoted by
Λ. The body is an ellipsoid of revolution of length Λ/3 and diameter Λ/30. Its axis is
chosen parallel to the x-axis. Its boundary is assumed to vibrate in a time-harmonic
way such that the normal velocity is constant on the whole surface at every time (the
body ‘breathes’).

In a first numerical application, the body is immersed at the depth Λ (more
precisely, its centre is located at point (0, 0,−Λ)). Figures 5 and 6 represent the
real and imaginary parts of the variations of the acoustic pressures p1 and p2, on a
horizontal square of approximate side 6Λ and located at a depth of Λ/2. Figures
7(a) and 7(b) corresponds to sections of figures 6(a) and 6(b) for fixed values of y: 0
(solid lines), Λ/2 (broken lines), Λ (mixed lines: dots/dashes), 2Λ (dotted lines). The
first-order pressure seems to be symmetric with respect to the point (x, y) = (0, 0),
as for a point source. It actually is not exactly symmetric: the relatively small size
of the body (compared with the wavelength Λ) explains this apparent symmetry.
But the real shape of its boundary has a significant influence on the distribution
of the pressure field. For the second-order pressure, the particular direction of the
swell (which propagates along the y-axis) breaks this apparent symmetry: p2 is only
symmetric with respect to x = 0 and y = 0 since this property holds for the body,
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Figure 7. (a) Real part and (b) imaginary part of p2 (y = const).
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Figure 8. (a) Real part and (b) imaginary part of p2 (y = 0).
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Figure 9. (a) Real part and (b) imaginary part of p2 (y = const).

the swell, as well as p1. Notice that, as one could reasonably expect, the intensities of
both pressure fields p1 and p2 have their maxima above the body.

In a second numerical application, the body is immersed at the depth Λ/5. Figures
8 and 9 show the real and imaginary parts of p2 at z = −Λ/10 for fixed y (same
values and same representations as for figure 7). The fact that the body is now close
to the free surface explains the sharp peak located near x = y = 0 which appears in
figures 8(a) and 8(b) (note that the scale is different from figure 9).

In both applications, the ‘corrected term’ pc2 is small compared with the ‘free
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pressure’ pf2 . This is mainly due to the small diameter of the body (compared with Λ).

Indeed p
f
2 takes into account the primary reflection of the first-order pressure field

from the corrugated free surface, whereas pc2 corresponds to a secondary reflection
from the body. Here, our body behaves like a ‘needle’, and the effect of this secondary
reflection is negligible (unfortunately, pf2 is the time-consuming part!). Its contribution
may become significant if the diameter of the body and the wavelength are of the
same order (and if the body is close enough to the free surface).

5. Conclusions
5.1. What has been done

We have considered a body immersed in an ocean of infinite depth and radiating
time-harmonic acoustic waves in the presence of time-harmonic gravity waves. We
have restricted our attention to the case when both acoustic and gravity wavelengths
are of the same order, which corresponds for usual gravity waves to very low acoustic
frequencies. The ocean has been assumed to be a homogeneous and ideal fluid,
infinitely deep.

In § 2 it has been shown that the pressure field can be developed as

P = P1 +AP2 + · · · ,
if A is the amplitude of the gravity waves (A � 1). The first term P1 is the basic
acoustic field in the absence of gravity waves, P2 corresponds to its reflection from the
perturbed free surface. This term satisfies the Helmholtz equation in the linearized
liquid domain, together with a Neumann condition on the hull of the body and a
non-homogeneous Dirichlet condition on the mean free surface.

In § 3 we have studied the case of an acoustic point source. In the time-harmonic
case all possible solutions P2 have been obtained among which one has been selected,
namely the one given by a known distribution of standard normal doublets. Then
considering that the source starts at t = 0 and working both in space and time for
t > 0 it has been completely proved that the solution previously selected was actually
the physical one.

In § 4 we have come back to the general case of a vibrating body and presented a
splitting method to solve it. The field p2 has been split into a ‘free’ pressure pf2 and

a correction term pc2: we were lead by what was done in the point case to give pf2
in the explicit form of a convolution product in x and y, and pc2 satisfies a standard

radiation problem; pf2 is computed via numerical methods of integration and pc2 via a
coupled BEM/FEM method. A sample of numerical results has been presented.

But it must be pointed out that our splitting method is not neutral but implicitly
assumes a choice for the condition at infinity which is only motivated by § 3 but not
fully justified.

5.2. A full justification of the method

As for a point source (§ 3), one can obtain a limiting-amplitude result in order to justify
the splitting method. But due to the presence of the body, the situation is far more
involved and the complete proof requires sharp mathematical tools: it is detailled in
Champy-Doutreleau (1998). Here we restrict ourselves to sketching the leading ideas
of the proof.

The body is supposed to be at rest for t < 0 and to vibrate in a time-harmonic way
for t > 0. The corresponding time-dependent pressure field P2 must satisfy the wave
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equation in the linearized liquid domain together with a time-dependent Dirichlet
condition P2 = Q on the mean free surface, and it must vanish at infinity (in fact it
will be non-zero only on a bounded domain for any finite and positive t). For this
time-dependent problem the previously described splitting (here into Pf

2 and P c
2 ) can

be trivially justified. Then the three steps to be performed are the following.
(a) Q becomes asymptotically time-harmonic. This is a direct consequence of

standard limiting-amplitude theorems (see for instance Sanchez-Hubert & Sanchez-
Palencia 1989). Such results are closely related to the so-called limiting-absorption
principle which states that the time-harmonic pressure field appears as the limit of
the solution to a dissipative problem when the dissipation vanishes: this dissipation,
sometimes referred to as the Rayleigh viscosity, corresponds to complex values of the
frequency.

(b) Pf
2 becomes asymptotically time-harmonic. The proof is based on the same

arguments as in § 3.2.3: the main difference is that the datum Q is no longer explicitly
known, but derives from a time-dependent integral representation formula.

(c) Finally P c
2 becomes asymptotically a time-harmonic pressure field satisfying the

standard radiation condition. This is proved via a refined limiting-amplitude theorem.
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